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SUMMARY

The microcode compiler being developed at PENGUIN SOFTWARE,
Inc. is based on the concept of a retargetable compiler. This
approach does not have a fixed machine-independent language,
but allows the user to develop a language specific to each
particular target machine. This provides a means for the user
to incorporate knowledge of target machine design into the
language definition, and avoid the necessity for resource
allocation and code compaction in the application program.

Previous microcode compilers have evolved from traditional
compiler concepts and design methodologies. They have adopted
an approach involving machine-dependent languages and have
attempted to capitalize on the associated advantages. This
approach invariably gets bogged down in the problems
associated with microcode compaction and resource allocation.
Until these problems are solved, this approach has to be
considered very high risk.

The Microcode Compiler being developed at PENGUIN SOFTWARE,
Inc. has evolved from the classic microprogramming tool i.e.
the meta-assembler. Our microcompiler starts out with an
underlying meta-assembler and builds up a higher level
language capability around it. This approach results in a
microcode development tool which is a very low risk, and is
capable of supporting virtually any digital hardware
architecture.

This microcode compiler is a new type of program. According
to one source, this approach has never been tried before; at
least no other retargetable microcode compiler exists. ThLs
study has established the advantages of this approach to be:

1. Low Risk : There are no high risk algorithms
remaining to be developed.

2. Robustness : This compiler can support any
processor architecture supported by the current
state-of-the-art meta-assemblers.

3. Speed : This comp '.. is competitive with
meta-assemblers in te."'s -f speed. This is in sharp
contrast to other micrL apiler designs. 0

0
4. Timeliness : This approach is working now.

Currently, PENGUIN SOFTWARE, Inc. is involved in a
continueing development effort to produce a commercially
marketable microcompiler which is capable of supporting the
development of microcode for cascadable, parallel, and Cdes
systolic arrays of microprocessors. ',
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PREFACE

This report describes the microcode compiler feasibility
study and the compiler development undertaken at PENGUIN
SOFTWARE,Inc. under the phase two SBIR contract
DAAD07-87-C-0119 sponsored by White Sands Missile Range.

There is currently a critcal need for a fully retargetable
microcode compiler and for an effective development tool to
support programming the new non-von Neuman architecture
microprocessors. As more parallel processors, systolic
arrays, and cascadable processors become available, these
needs can only become more acute. Most of the chips resulting
from the VHSIC program and all near-term gallium arsenide
devices will require microcoding. For the benefits of these
advances to be fully realized, microcode development will
have to be automated in the relatively near future.

Our feasibilty study required the development of two
compilers: the Syntax Compiler and the Microcode Compiler.
The Syntax Compiler generates a file which defines the syntax
and semantics of a machine dependent language. The Microcode
Compiler along with this "Syntax File" then becomes tailored
to a particular target machine and a particular language. An
application program is then written in this new language and
compiled into an intermediate language file.

This intermediate language is typically a lower level
language than the application programing language but higher
than the binary object file. We choose to use HILEVEL
Technology's HALE meta-assembler language as our intermediate
level language. Since HALE is more or less campatible with
MICROTEK Research, using HALE is not as restrictive as it'may
at first appear.

The advantages of using a state-of-the-art meta-assembly
language as an intermediate level language were quite
significant. The intermediate file is easily modified by the
programmer in a familiar language; the meta-assembler handles
the actual assembly, linking, and PROM formatting.

While there are very few research journal articles related to
our work, we have not been forced to work in a vacuum. We
would like to thank the marketing staff at HILEVEI Technology
in Irvine, and we would especially like to thank Mr. Warren
Long, Product Marketing Manager at HILEVEL technology for his
many suggestions in the areas of requirements and engineering
design. We would also like to thank the engineers and
managers of Rockwell International, Hughes Aircraft,
Northrop, and TRW that have contributed tlieir time and
allowed themselves to be interviewed.
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1.0 INTRODUCTION

The microcode compiler being developed at PENGUIN SOFTWARE,
Inc. is a retargetable compiler. This compiler does not have
a fixed machine-independent language, but allows the user to
develop a language specific to each particular target machine
and application.

The microcode compiler is a two stage translation scheme. The
first stage provides a fixed high-level design language to
permit the easy definition of the machine-dependent high-
level language. The language definition compiler, called the
Syntax Compiler, produces syntax files which define both the
syntax and semantics of the target machine language.

The application program is compiled by the Microcompiler to
produce the object file microcode. The application programs
are written in a language specifically designed for the
particular target processor. This language is almost
completely free from constraints with just enough underlying
language structure to facilitate the application language
compilation process.

The approach to automated microcode generation being
developed at PENGUIN SOFTWARE, Inc. is based on the concept
of machine-dependent languages. This provides a means for the
user to incorporate knowledge of the target machine into the
language definition. There are some obvious advantages and
disadvantages to this approach.

Some of the advantages of this approach are expressiveness,
robustness, and low risk.

a. This approach allows the programmer to design a
machine-language tailored to the needs of a particular
application. This can result in a highly expressive and
efficient language.

b. Because of this microcode compiler's relationship to the
underlying HALE meta-assembler, this microcode compiler is
extremely unlikely to fail due to a particular target machine
design.

c. Finally, this approach avoids the tough problems of
microcode compaction and resource allocation.

Some of the disadvantages of this approach are lack of a
stable application language, and the difficulties associated
with trying to imbed low-level hardware details in a high-
level language.

a. A stable application language is desireable because it



makes application programs more transportable and facilitates
the development of microcode simulators.

b. Because of the hardware design, it may be difficult to
design a suitable high-level language for a particular
application.

The basic requirement of our Phase II effort was to
demonstrate the feasibility of PENGUIN SOFTWARE's approach to
microcode development. Section 2.0 describes, in some detail,
the research and development efforts expended at PENGUIN
SOFTWARE, Inc. to meet the Phase II requirement and
summarizes the important results from Phase I. These results
were essentially the design specification of the class of
languages supported by the Microcode Compiler.

Section 3.0 describes the objectives of the Phase II
contract. Under the current contract, the following
objectives were completed at PENGUIN SOFTWARE, Inc.:

a. Developed the operational concept based on using HALE as
an intermediate level language. We had to varify that we
could use our Microcode Compiler essentially as an HALE
preprocessor.

b. Upgraded existing software to reflect our new philosophy.
The Microcode Compiler now functions more generally as a
semantic action processor, and not just a high-level language
processor designed to produce binary object files.

c. Modified source code to output HALE as an intermediate-
level language. In addition to modifying the Syntax and
Microcode Compilers to output ascii code, the capability to
support HALE pseudo-operations was also required.

d. Included the capability to support cascadable
microprocessors. The Microcode Compiler now supports one or
more cascaded processors as specified by parameteric command
line input.

e. Developed a dynamic memory allocation scheme. Now key
arrays are stored either in lower RAM or in extended memory
above one million bytes. This feature is designed to keep the
Microcode Compiler from becoming obsoleted by a large
program.

f. Optimized the Microcode Compiler for Speed. The Microcode
Compiler was restructed in order to speed up processing
during the time critical compilation of the application
program.

Section 4.0 gives a summary of conclusions and

2



recommendations. We concluded that all technical objectives
were attained. This project shows that this is the low risk
approach to developing a Microcode Compiler. This follows
from the evolutionary (rather than revolutionary) nature of
our relationship to the proven meta-assembler technology.
After restructuring the Microcode Compiler runs quite fast,
and should be completely satisfactory commercially. Our

approach to high-level language microcoding has proven to be
quite robust. We have found that for difficult problems, the
level of the application language may degrade. But there
appears to be no significant tendency for the efficiency of
the microcode to be impaired.



2.0 MICROCODE COMPILER STUDY

PENGUIN SOFTWARE's retargetable microcode generator system
emulates a wide range of computer architectures. By allowing
the user to define a machine-dependent high-level language,
and then write an application program in this new language,
the microcode generator is able to translate the application
program into efficient horizonal microcode.

Our minimum goal was to produce a working microcode compiler
which would be a useful tool in industry. In order to achieve
this goal, we determined to start with the most powerful
meta-assembler that we could find and then enhance its
capabilities to achieve a higher-level language capability.
For a project overview, see Appendix A. Many of the project
tasks were divided into two parts. The first part, the syntax
analysis, determines the readability of the language. The
second part, the semantic action, determines to a large
extent the level of the language.

2.1 Define Machine Dependant Languages

2.1.1 Statement Notation

Two types of statement notation were considered. The first
type, "action verb", is similiar to the standard assembly
language statement. Unfortunately, "action verb" does not
seem compatible with the requirements of horizonal
microprogramming. The second type of statement notation,
"list notation", is ideal for horizonal microcoding. This
statement has the basic form shown in Fig. 1. We have adopted
the convention that all labels are immediately followed by a
colon, the entities are separated by ampersands, and the last
entity is followed by a semicolon. Everything to the right of
the semicolon is a comment.

2.1.2 Entity Notation

The lowest level of entity notation identified is "positional
notation." In positional notation each entity is related to
one particular field. This notation does not appear to have
any role in our high-level language except possibly to force
specific values into a specific microword, and even then
there seems to be better ways to accomplish that.

Several nonpositional entity notations were identified. These
include "function reference notation", "value mnemonic
notation", and "keyword notation". All of these notations are
desireable in different applications. Rather than decide on
anyone of them, a different notation has been selected which
includes all of the above: this is the "free notation". In
the free notation there are almost no constraints on the

J4



<label>: <entity>&entity>&...&<entity>; <comment>

FIGURE 1. List Notation Format.

<label>: <clause>&<clause>& ... &<clause>;<comment>

FIGURE 2. Compiler Sentence Format.

CLAUSE {<syntax definition>}{<semantic actions>}

FIGURE 3. CLAUSE Definition Format.
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notation used. The only constraints imposed on the entity
notation are those derived from the design requirements and
the implementation of the program.

2.2 Define Syntax Definition Language

We have adopted the terms "sentence" for the entire line from
the label to the end of the comment, and the term "clause"
for the entity as shown in Fig.2. Since only the structure of
the sentence is hard-wired into the microcode compiler, it
remains to the syntax compiler to define the syntax and
semantics of the clauses. A syntax compiler source file is
constructed using the language outlined below. This file will
define all of the legal application language clauses and
define what these clauses mean. The basic clause definition
appears as shown in Fig. 3.

2.2.1 Syntax Definition

The syntax definition process for each clause is accomplished
by using three related contructs: literal strings, arrays,
and literals.

Literal strings are the simplest and in some cases the most
efficient means for defining the syntax of a clause. A
literal string is a string of alphabetic or special
characters enclosed in double quotes. Numerical digits can
also be included, but they must be preceeded by an alphabetic
character. Ignoring the semantic definitions for the moment,
the examples as shown in Fig. 4 show clauses defined using
the literal string.

Literal strings are most useful for clauses, such as "NOP",
which are, in a sense, one-of-a-kind. Literal strings are not
very efficicient in situations like "REGI = REG12" where
there are several registers that may appear on either side of
the equation such as shown in Fig. 5. This situation is
handled by the two types of arrays described below.

First, the ARRAY is identified by an array name, then the
ARRAY is defined by an array of tokens and their associated
semantic actions. Fig. 6 is a simple example of an ARRAY
structure. An ARRAY is used in a CLAUSE definition simply by
specifying the ARRAY name. Using an ARRAY in a CLAUSE
definition can considerably reduce the amount of effort
required as can be seen by the example in Fig. 7. In this
example, we have a very simple situation where the contents
of any source register can be moved into any destination
register. Experience has shown that quite often these ARRAY's
will be used repeatedly to define other CLAUSE's. This
results in a tremendous savings of programming effort.

6



CLAUSE t "NOP" }

CLAUSE{ "REGI = REG12" }

CLAUSE { "REPEAT(FOREVER)" }

FIGURE 4. Example: Literal String Definitions.

CLAUSE { "REGI = REGI" }
CLAUSE { "REG2 = REG" }
CLAUSE { "REG3 = REGI" }

CLAUSE { "REGIF = REGI" 
CLAUSE { "REGI = REG2" }
CLAUSE { "REG2 = REG2" I

CLAUSE { "REGiF = REG2" }
CLAUSE { "REGI = REG3" }

CLAUSE { "REGIF = REGIF" I

FIGURE 5. Example: When NOT to use Literal Strings.
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ARRAY <array name> =
<token #1>{ semantic action };

<token #2>{ semantic action 1;

<token # n> semantic action };

FIGURE 6. ARRAY Definition Format.

CLAUSE { REGD " REGS }

ARRAY REGD = {
REGI{ semantic action 1;
REG2( semantic action );
REG3{ semantic action };

REGlf( semantic action };
}
ARRAY REGS :

REGif semantic action };

REG2{ semantic action };
REG3{ semantic action };

REGIf{ semantic action };

FIGURE 7. Example: Using ARRAY Definitions.
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Occasionally, we have a situation, unlike the preceeding
example, where the source and destination registers are not
orthogonal. That means, in this case, only certain source
registers can be used with certain corresponding destination
registers. The result is that simple ARRAY's would no longer

work efficiently. Now we could fall back on the use of
literal strings as discussed before and define several
CLAUSE's as shown in Fig. 8. Although this approach would
work, it is still possibly quite inefficient. For this
reason, we have adopted an approach using dimensioned
ARRAY's. Dimensioned ARRAY's have the particular property
that if more than one column of the ARRAY is used in a CLAUSE
definition, then the tokens must all come from the same row.
The definition of a dimensioned ARRAY is shown in Fig. 9. A
dimensioned ARRAY is used to solve the CLAUSE definition
problem discussed above as shown in Fig. 10.

The final construct is the LITERAL. LITERAL's are used to
define the processing of numbers and statement labels. The

LITERAL is defined as shown in Fig. 11 and is used in a
clause as shown in Fig. 12. The LITERAL allows the
application programmer to include values in the program at
compile time.

2.2.2 Semantics Definition

The semantics of a particular statement is defined in terms
of the semantic actions to be performed when that statement
is encountered in an application program. For each
application program statement, the microcode compiler must
reconstruct the statement definition to determine the

particular CLAUSE, ARRAY row, and LITERAL as appropriate.
These semantic actions are associated with the CLAUSE's, rows
of the ARRAY's, and with the LITERAL's.

The semantic actions which have been implemented are desribed
below:

a. DEF'ed statement: A DEF'ed statement with field values

specified or left blank. This statement is to be inserted
into the HALE source file, along with any other statements
associated with the current line of microcode.

b. LBL: LBL appearing in a DEF'ed statement will cause
the contents of the Active Label Register to be inserted into
the corresponding field.

c. PSH: PSH will cause the contents of the Active Label
Register to be pushed onto the Microcode Compiler Internal
Stack.

d. PPS: PPS will cause the Microcode Compiler Internal

9



CLAUSE { "REGi = REG5" }

CLAUSE { "REGI = REG7" }
CLAUSE { "REG2 = REGI" }

CLAUSE { "REGIF REG12" }

FIGURE 8. Example: When NOT to use simple ARRAYs.

ARRAY <array name>(dim #1,dim #2,...,dim #m) z
<token(1,1),token(1,2),...,token(1,m)>( sematic action }
<token(2,1),token(2,2),...,token(2,m)>{ sematic action }

<token(n,1),token(n,2),...,toen(n,m)>{ sematic action }}

FIGURE 9. Dimensioned ARRAY Definition Format.

CLAUSE ( REGDS(1) ": REGS(2) }

ARRAY REGDS(1,2) = {
REG1,REG5( semantic action };
REGI,REG7T semantic action I;
REG2,REG1{ semantic action };
REG3,REG5{ semantic action };

REGIF,REG12{ semantic action };}

FIGURE 10. Example: Using Dimensioned ARRAYs.

10



LITERAL( <literal number> ) = semantic action }

FIGURE 11. LITERAL Definition Format.

CLAUSE { REGD "=" LITERAL(1) }

LITERAL(1) = { semantic action I

ARRAY REGD = defined as above in figure 7.

FIGURE 12. Example: Using LITERAL.
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Stack to be popped, and the value popped will be inserted
into the Active Label Register.

e. MAK: MAK will cause a label to be created and stored
in the Active Label Register.

f. PLB: PLB will cause the label stored in the Active
Label Register to be inserted into the HALE source file at
the current microcode address.

g. LBLn: LBLn (where n = 1,2,3,4,5) will cause the
contents of the Active Label Register to be stored in
Microcode Compiler Internal Register n.

h. SWP: SWP will cause the top two labels stored in the
Microcode Compiler Internal Stack to be swapped.

i. LIT: LIT used in a LITERAL pseudo operation will cause
the corresponding literal to be stored in the Active Label
Register.

j. LITn: LITn (where n = 1,2,3,4,5) will cause Microcode
Compiler Internal Register n to be copied into the Active
Label Register.

2.3 Compiler Capabilities

One of the key design decisions was to use the HILEVEL
Technology HALE Meta-assembler language as an intermediate
language for our compiler. As a consequence, the compiler was
modified to output HALE compatible code, to handle HALE
pseudo-operations, and to process HALE Definition Phase
source files. Our compiler gained flexibility and many of
HALE's most important capabilities at very little cost.

2.3.1 MACRO's

One of the advantages of using a high-level langauge is the
ability to generate more than one line of object code from
one line of source code. This capability has been included in
the microcode compiler.

2.3.2 Structured Control

Structured control statements allow the development of block
structured code and an orderly approach to program control
flow. Structured control is included as an important part of
the microcode compiler. Since developing structured control
statements requires the use of Microcode Compiler internal
resources, a brief example may be appropriate.

Suppose you intend to provide in your language the DO...WHILE

12



instruction as shown in figure 13. Reasonably, the DO

statement must provide for:

1) The creation of a statement label (MAK).

2) The assignment of the newly created label to the current
location in the microcode (PLB).

3) The saving of the label on the Microcode Compiler Internal
Stack (PSH).

The WHILE statement must then:

4) Retrieve the label from the stack (PPS).

5) Insert the label into the microcode as the destination of
a conditional jump statement using the LBL pseudo opcode.

For further examples, see the PSI Microcompiler User's Manual

2.3.3 Compiler Evaluation Of Expressions

Arithmetic expressions are not evaluated during the compile
phase. There are inserted into the HALE source file output
from the compiler. The final evaluation of the expressions is
performed during the HALE assembly phase.

2.3.4 Pseudo Operations

PENGUIN SOFTWARE's microcode compiler was modified to use all
of the HALE meta-assembler pseudo-operations. Most of the
psuedo-ops are just inserted into the HALE source file at the
appropriate places e.g MAP. Other pseudo-ops are processed in
the microcode compiler or the HALE meta-assembler as required
e.g. LIST.

2.3.5 Conditional Compilation

There were essentially two ways to handle conditional
compilation. One was to evaluate the condition and just
insert the appropriate microcode into the HALE source file.
The other approach, the one adopted, was to insert the
conditional statements and both parts of the microcode into
the source file. This final approach is much closer to the
way things are commonly done, and was much easily to
implement.

2.3.6 Relocatable Object Code

Relocatable microcode is produced by including the
appropriate pseudo-ops in the Microcode Compiler source file.
These pseudo-ops are then inserted into the HALE source file

13



DO

WHILE( <some condition> )

13.a EXAMPLE: Application Program use of DO...WHILE

CLAUSE { "DO" H MAK & PLB & PSH I
CLAUSE { "WHILE(" <some condition> ")" }

PPS & AM2910 ,LBL,,CJP }

13.b EXAMPLE: Possible Definition of DO...While

FIGURE 13. Using Internal Compiler Resources.

14



at the appropriate places.

2.3.7 Linkable Object Modules

The HALE meta-assembler produces relocatable microcode
modules which are then linked using the HILEVEL Technology
linker program.

2.4 Support Cascadable Microprocessors

The decision to use HALE as an intermediate language has had
the severist consequences in the requirement to support
cascadable microprocessors. This requirement involves
essentially multiplying the microword produced for one
processor by some number n representing the number of
cascaded processors. While this was not difficult to achieve
in the Syntax and Microcode Compilers, the maximum HALE word
width represents a significant limitation.

2.5 Dynamic Memory Allocation

This concept was originally based on a misconception about
the architecture of the IBM/AT and the operation of the MSDOS
operating system. The original concept was based on the
misconception that the MICROSOFT "C" compiler runnig on MSDOS
allowed easy access to memory above the 640K limit. This, of
course, proved to be wrong.

We were forced to develop an approach similiar to the way RAM
Disks are implemented. This involves paging data in and out
of Extended Memory. Using MSDOS interrupts called through "C"
functions data is moved in or out of Extended Memeory as
required. This requires maintaining page counters and page
pointers down in local memory.

Also we were required to. develop an appropriate page
replacement strategy. We finally settled on leaving the first
and last pages resident in local memory, while paging
intermediate pages in and out as required. This has several
advantages which are based on the construction of our symbol
tables and hash tables. After hashing a symbol, we are left
with a pointer into a list of linked lists. All of these
linked lists begin on the first page. Any symbol not found in
the symbol table is inserted at the end of the list, which is
always on the last page.

WARNING: Since this approach is similiar to RAM Disks, I't is
not suprising that all data stored in RAM Disks is subject to
be destroyed unless care is taken addressing this problem.

a. One solution might be to not use RAM Disks.
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b. Another solution might be to locate the RAM Disk above the
two megabyte boundary and reserve the second megabyte for the
microcode compiler.

2.6 Optimize Compilers For Speed

The original concept was to identify certain code segments
which were consuming large percentages of the processing
time. Once these segments where identified, we were going
immediately into an assembly language recode of those areas.
This approach was modified considerably.

Asembly language routines where coded and inserted into the
two compilers. An interrupt was used to stop the program
periodically, and a table of location counters was
incremented based on where each interrupt occured. After a
run through each compiler, the location counter tables where
dumped to a file for further analysis.

The analysis of this data showed that optimizing the syntax
compiler was not worth while short of recoding the whole
program. As a consequence, the Syntax Compiler was not
modified. We decided to focus all of other recoding effort on
the Microcode Compiler. Recoding in assembly language carries
a heavy penalty in terms of reliability and maintainability.
As a consequence, it was decided initially to try
restructuring the "C" program in order to obtain the required
increase in speed. This restructuring was performed with the
result that the Microcode Compiler is now running in times
comparable to most meta-assemblers.

2.7 Generate Design Modifications

One of the most substantial design modifications involved
converting the compilers to "semantic action machines". We
took this to mean that the compilers would be designed to
handle a wide range of semantic actions and would be designed
to facillitate incorporating new semantic actions in the
future. This change reflects our intensions to push the level
of the languages supported to higher levels, and to support a
much wider spectrum of application than just microcoding.
Several suggestions have been recieved for enhancements along
these lines e.g.

a. Allow creating a label from any arbitrary symbol. This
would be extremely useful when the user is creating
subroutines or functions.

b. Allow creating variables and assigning storage classes at
compile time. Currently these variables are assigned a fixed
storage class at syntax definition time.
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c. Process (for example) SIMSCRIPT pseudo operations in
programs. This would allow the use of this compiler for the
rapid prototyping of ultra high level simulation languages.

2.8 Make Code Changes

Code modifications where intended to adhere to standard
software engineering practices. We tried to avoid the
temptation to patch in changes and cutting other corners. As
a consequence, there were few problems with our level zero
testing (software debug at the lowest level).

2.9 Generate Test Cases

Test cases were generated to satisfy three requirements: to
debug the program; to perform the compiler timing studies;
and to demonstrate the capabilities of the microcode
compiler.

The debugging effort was automated as much as possible to
encourage and facilitate frequent testing. Both a test file
(or files) and an answer file were created. DOS commands were
then issued from a ".BAT" file to automatically run a test
case and verify the results.

WARNING: Inspite of these efforts, no effort was made to test
these programs to any standard appropriate for a commercial
product or to a standard adequate for a military deliverable
item.

Test files were constructed for use in the timing studies.
The Syntax compiler was timed with one large and one small.
test case, while the Microcode Compiler was timed with a
large, a medium, and a small test case for each of the Syntax
Compiler output files.

Our original goal was to be as fast as the state-of-the-art
meta-assemblers. With our current approach, this was
impossible. Since the compiler produces a HALE source file
which must in turn be processed by the HALE meta-assembler,
we were forced to include the assembly times in our analysis.

The third type of test case was designed to demonstrate the
expressive power and flexibility of the Microcode Compiler.
Various languages were developed. These languages were
realistic in the sense that the were designed to solve
certain problems; they were complete only to the extent that
they solved the required problems. Some languages were
generated to support the customers in-house microprogrammable
computers and were intended to prove the Microcode Compiler's
ability to support a wide range of machines.
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2.10 Integrate Software Modifications

Perhaps the biggest problem we encountered was involved with
the interface between HALE and the PENGUIN SOFTWARE Microcode
Compiler. HILEVEL Technology provided us with a set of
documentation for a new version of HALE. Unfortunately, this
version does not seem to have ever been developed. This
required back tracking to an earlier version of HALE which
was in fact released. Our Microcode Compiler now works with
the latest versions of the HALE meta-assembler.

WARNING: Our Microcode Compiler is known not to work with the
out dated versions of HALE. In particular, the HALE version
must be able to handle labels on empty sentences i.e.
sentences which do not contain DEF'ed statements.
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3.0 STATUS OF ACCOMPLISHMENTS

During this period, a full scale retargetable microcode
compiler was specified, designed and constructed. The purpose
of this development effort was to demonstrate the feasibility
of our approach to automated microcode development. At
completion of this feasibility study, we had produced a fully
operational microcode compiler and had applied it to several
different test cases for evaluation.

3.1 Develop Operational Concept

An operational concept was developed which integrated our
microcode compiler into the already existing HILEVEL
Technology HALE meta-assembler microcode development system.
This approach has several advantages. By outputing HALE as
our intermediate level language, we are able to fully exploit
the features and capabilities of that state-of-the-art
meta-assembler. Some of these features include expression
evaluation, relocatable microcode, and linkable microcode.

3.2 Upgrade Existing Software

The design of our final product was based on the design of
the Phase I prototype. The development of this prototype
unfortunately involved generating a lot of kludges which
reduced reliability and maintainability. The entire program
was reviewed and recoded as necessary in line with modern
software engineering practices.

3.3 Output HALE Source Code

The microcode compiler now outputs ASCII strings of HALE
source code instead of a binary object file. At first glance
the may appear to be a step backward, and it is. This
approach however does have several advantages. In addition to
adding all of the power of the HALE development system to our
microcode compiler, it also generates output in a form which
can be easily modified by a microprogrammer.

3.4 Support Cascadable Micrprocessors

The microcode compiler now contains the option of expand the
microword by some operator input factor in order to
accomodate cascadable microprocessors. Unfortunately this
capability is somewhat limited by the need to process our
output through the HALE system which has a limited microword
wide.

3.5 Dynamic Memory Allocation

As the need for larger and larger microprograms continues,
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any microcode compiler is in danger of running out of main
memory and becoming obsolete. In an attempt to extend the
life of our microcode compiler and investigate the last
remaining new algorithm, we included the capability to use
extended memory where available and specifically permitted.
Various predefined large arrays can be located in an open
ended manner in otherwise useless extended memory.

3.6 Optimize Compilers For Speed

It was ultimately determined that our microcode compiler was
too slow. An analysis of CPU time useage showed that only the
microcode compiler (and not the syntax compiler) needed to be
accelerated. While it was originally intended to recode
certain critical functions in assembly language, this
approach was finally rejected as too unreliable, and
difficult to maintain. What we did was use our timing
analysis to guide a restructuring of the "C" code.
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4.0 CONCLUSIONS AND RECOMMENDATAIONS

4.1 Conclusions

A new and powerful approach to microcode development has been
investigated at PENGUIN SOFTWARE, Inc. under the contract
DAAD07-87-C-0119 sponsored by White Sands Missile Range. This
approach has required the development of two prototype
compilers. The first compiler is used to design and define a
machine-dependent language for a particular target machine.
The definition of this language is contained in a syntax and
semantic definition file. This syntax file is inverted and
input to the microcode compiler. This microcode compiler then
functions somewhat as a HIGH LEVEL Technology HALE
preprocessor which converts the application program into an
HALE source program.

4.1.1 Tasks Completed and Objectives Attained

All proposed tasks have been completed and all technical
objectives have been attained resulting in a demonstratiion
of the feasibility of our proposed approach.

4.1.2 Low Risk Approach

After running several test cases during the software debug,
software validation, timing study, and the demonstrations, we
have gained confidence not only in the correctness of the
software but also in the validity of nur approach. This being
a new approach, it had several conjectured disadvantages. We
have found that there were indeed no undeveloped algorithms
waiting to trip us up. We were able to proceed to a full up
working production-quality microcode development system.

4.1.3 High Speed

In the real world, program speed is certainly an important
issue. We were concerned that the microcode compiler would be
non-competitive with state-of-the-art microcode development
systems because of the added algorithm complexity. Our
approach involved using proprietary algorithms and data
structures developed here at PENGUIN SOFTWARE, Inc. over the
past five years. The result is that the existing microcode
compiler runs in times more than competitive with existing
meta-assemblers.

4.1.4 Graceful Degradation

All commercially successful meta-assemblers have at least one
capability in common: This is the capability to support any
machine that may be designed. Using the traditional approach
with microcode compilers. It is easy to envision target
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machine designs that would render a traditional microcode
compiler uselessly inefficient. The complexity and
sensitivity of the resource allocation schemes and the
microcode compaction algorithms leave these compilers
extremely vulnerable to total failure.

With our approach, a situation involving total failure due to
target machine complexity is avoided. In the worst cases, the

high-level language supported will fail to meet user

expectations with respect to the level of the language. In
this case the greatest concern has to do with how
successfully low level hardware design features can be
incorporated into a high level language. This is a small
issue compared to a case were the microcode compiler simply
no longer works or produces unacceptably inefficient
microcode.

4.1.5 Language Level

PENGUIN SOFTWARE's microcode compiler supports some popular
and important language features. These features include the
common arithmetic expressions appearing in languages like
FORTRAN, "C", and ADA. In addition, our compiler supports
semantic actions which allow the definition of various
"structured" programming constructs e.g. DO...WHILE,
REPEAT...UNTIL, IF...THEN...ELSE...ENDIF, CASE, etc.

PENGUIN SOFTWARE's microcode compiler does not achieve the
language level of "C", and ADA. We fail to achieve this
capability in two important areas.

Firstly, there is resource allocation. Typically in
high-level languages, the programmer has the ability to
either specify resource allocation at compile time or have
the compiler allocate resources automatically. With our
compiler, resources must be allocated during language
definition or at compile time: there is no automatic
allocation of resources.

Secondly, there is code compaction. An ideal microcode
compiler would automatically produce compact and efficient
microcode. While our compiler is capable of producing good
microcode, it does not do it automatically. Essentially, our
compiler produces efficient microcode by a combination of
designing efficiency into the high-level language and by
requiring the application programmer to apply knowledge about
the target hardware.

4.1.6 Comparing The Two Approaches

There are several advantages to having a microcode compiler
support a machine independent language e.g "C", or ADA. These
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languages free the programmer from needing any hardware
knowledge and drastically reduces the skill level needed in
the programming staff. In addition, there is a large supply
of programmers already skilled in using the common machine
independent languages. Finally, a language written in "C"
(for instance) automatically provives a microcode simulator.
This follows from the fact that "C" compilers are common and
a "C" programm can be compiled and ran on practically any
microcomputer.

The main advantage of our approach is that it works. Our
approach to automated microcode generation was initially
considered to be low risk in two important respects.

a. During our development effort, there were no high risk
algorithms to be developed. We were quickly able to generate
working compilers which were then refined through several
stages of improvement.

b. For the end user, our approach is much more robust than
the competition. This follows from the current state of code
compaction algorithms.

The result is that we have developed a microcode development
system which we can use and evaluate in the short term. In
the long term, when the code compaction and resource
allocation algorithms are perfected, the machine independent
language approach based on ADA or "C" will be far superior to
the machine dependent approach.

4.2 Recommendations

We have two recommendations that are contrary to conventional
wisdom.

4.2.1 Rethink Expectations

The advantages of automated microcode generation result
mostly from the readability of high-level languages. Code
that is easier to read is easier to write, debug, test, and
maintain. High-level language microcode can more than pay its
way with these advantages. Unfortunately, many people have
unrealistic expectations about productivity improvements
resulting from code expansion.

QUESTION: Many high-level language statements expand into ten
assembly language statements. Likewise, many assembly
language statements expand into ten microcode statements. Can
we reasonably expect high-level language statements to expand
into one hundred microcode statements?

Our answer, with a few obvious exceptions, is no. The fact of

23



the matter is that the code expansion mentioned above results
mostly from mismatches between the hardware structure and the
languages being supported. Our examples of "C" statements and
their handcoded microcode equivalents show that a well
matched machine and high-level language will result in a
one-to-one translation of high-level language to microcode
very similar to a meta-assembler with MACRO capability.

4.2.2 Design Hardware To Match Compilers

There is one fact about high-level languages which seems to
be consistently overlooked: modern computers are designed to
support these compilers. The microcoding community must
accept the obvious consequences of this fact: hardware design
requirements will have to include provisions for supporting
microcode compilers.
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A1.0 MAINSTREAM APPROACH TO AUTOMATED MICROCODE GENERATION

Most efforts at automated microcode generation have turned
toward high-level languages and hence microcode compilers. In
addition, all research efforts appearing in technical
journals have adopted a similiar approach to developing a
micocode compiler. We call this approach the "mainstream"
approach.

The mainstream approach to automated microcode generation
starts with a high-level language capability and attempts to
work toward efficient microcode. This approach is based
essentially on the existing compiler technology(see Fig.
A-I). The main idea is to start with some appropriate
machine-independent language as a target language, design a
compiler to expand source code (written in the target
language) into some intermediate language, expand the
intermediate language into microcode, allocate resources in
the microcode, and finally process the microcode in an
attempt to improve the efficiency of the microcode to a
satisfactory level.

A2.0 PENGUIN SOFTWARE'S APPROACH

PENGUIN SOFTWARE's approach to automated microcode generation
starts with efficient microcode and works towards a
high-level language capability. Rather than start with
existing compiler design technologies, we start with existing
meta-assembler capabilities. To the typical meta-assembler
capabilities, we have added more semantic actions upgrading
the level of the languages supported.

Our approach requires two compilers: the first compiler far
the language definition, and the second compiler for the
microcode generation (see Fig. A-2). A language Descriptiion
File is prepared which defines the target language. This file
is compiled to produce a set of drive tables (Syntax
Definition File) which define the target language for the
Microcode Compiler. Finally, the application program (written
in the target language) and the drive tables are processed by
the Microcode Compiler which in turn produces the microcode
Object Program.

A3.0 state of microcode compilers

Figure A-3 attempts to show our analysis of the current state
of the Microcode Compiler effort. The upper left hand corner
represents the current state-of-the-art in compiler
technology: very high-level language and very low efficiency
microcode. The lower right hand corner represents the current
state-of-the-art in meta-assembler technology: very high
efficiency microcode and very low-level languages.
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The mainstream approach (represented by "MS") is essentially
a standard compiler with a microcode compaction algorithm
added on at the end. This allows a substantial improvement in
efficiency but still fails to achieve an acceptable level of
performance. The mainstream approach attempts to capitalize
on the substantial benefits of providing a machine-
independent language. The success of this approach is
dependent on the development of acceptable resource
allocation and code compaction algorithms. Without these
algorithms, this whole approach fails catastrophically and is
not commercially useful as a microcode development tool.
After decades of research, useful algorithms are still not
available.

The PENGUIN SOFTWARE approach (represented by "PS") is
essentially a standard meta-assembler with additional
semantic actions. This allows a substantial improvement in
the language level without necessarily sacrificing microcode
efficiency. When this approach fails, it fails gracefully.
The success of our approach, for a particular application, is
determined by the level of the language supported and the
level of customer satisfaction with that language. The
minimum level of the language and the minimum level of
efficiency of the microcode need never be any worse than for
the underlying meta-assembler. Since this meta-assembler
represents the current state-of-the-art, the Microcode
Compiler should never fail to be a useful development tool.
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